Midterm Exam — Partial Differential Equations (WBMA008-05)

Wednesday 14 May 2025, 18.30-20.30h

University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.
- 3. If p is the number of marks then the midterm grade is G = 1 + p/5.

Problem 1 (7 + 4 + 4 = 15 points)

Consider the following nonuniform transport equation:

$$\frac{\partial u}{\partial t} + x(x-1)\frac{\partial u}{\partial x} = 0, \quad u(0,x) = \arctan(2x).$$

- (a) Show that all nonhorizontal characteristic curves are given by $x(t) = \frac{1}{1 ce^t}$ with $c \neq 0$.
- (b) Compute the value of the solution u at the point (t,x) = (1,1/(1+e)).
- (c) Is the solution u at the point (t,x) = (1,1/(1-e)) determined by the initial condition?

Problem 2 (12 + 3 = 15 points)

Consider the function $f: [-\pi, \pi] \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 0 & \text{if } -\pi \le x \le 0, \\ \pi - x & \text{if } 0 < x \le \pi. \end{cases}$$

- (a) Compute the coefficients a_k and b_k of the real Fourier series of f.
- (b) What is the value of the Fourier series at x = 0?

Problem 3 (10 points)

Consider the following heat equation:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \qquad \frac{\partial u}{\partial x}(t,0) + u(t,0) = 0, \qquad \frac{\partial u}{\partial x}(t,1) = 0.$$

Show that nontrivial solutions of the form with $u(t,x) = e^{-\omega^2 t} v(x)$ with $\omega \neq 0$ exist if and only if $\tan(\omega) = -1/\omega$.

Turn page for problem 4!

Problem 4(2 + 3 = 5 points)

Consider the following wave equation with zero initial velocity:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad u(0,x) = f(x), \quad \frac{\partial u}{\partial t}(0,x) = 0,$$

where $-\infty < x < \infty$ and $f : \mathbb{R} \to \mathbb{R}$ is at least twice continuously differentiable.

- (a) Write down the solution formula of d'Alembert for this problem.
- (b) Show that if f is both odd and 2ℓ -periodic, then u(t,0)=0 and $u(t,\ell)=0$ for all $t\in\mathbb{R}$.

Solution of problem 1 (7 + 4 + 4 = 15 points)

(a) The characteristic curves $t \mapsto (t, x(t))$ are found by solving the following ordinary differential equation:

$$\frac{dx}{dt} = x(x-1).$$

(1 point)

To find the nonhorizontal characteristic curves, we use separation of variables:

$$\int \frac{1}{x(x-1)} dx = \int dt \implies \int \frac{1}{x-1} - \frac{1}{x} dx = \int dt$$

$$\Rightarrow \log|x-1| - \log|x| = t + k$$

$$\Rightarrow \log\left|\frac{x-1}{x}\right| = t + k.$$

(3 points)

Eliminating the logarithm and absolute value bars gives

$$\frac{x-1}{r} = ce^t$$
 where $c = \pm e^k$.

(2 points)

Finally, solving for x as a function of t gives

$$x = \frac{1}{1 - ce^t}.$$

(1 point)

(b) The point (t,x) = (1,1/(1+e)) lies on the characteristic curve given for c=-1. (1 point)

This characteristic curve intersects the x-axis in the point $(0, \frac{1}{2})$.

(1 point)

Since the points (1, 1/(1+e)) and $(0, \frac{1}{2})$ lie on the same characteristic curve and the solution u is constant along such a curve, we have

$$u(1, 1/(1+e)) = u(0, \frac{1}{2}) = \arctan(1) = \pi/4.$$

(2 points)

(c) The point (t,x) = (1,1/(1-e)) lies on the characteristic curve given for c=1. (1 point)

Note that the equation

$$x = \frac{1}{1 - e^t}$$

actually specifies *two distinct curves* in the (t,x)-plane, namely one branch for t > 0 and another branch for t < 0. The branch that contains the point (1,1/(1-e)) does not intersect the *x*-axis. Therefore, the solution at the point (t,x) = (1,1/(1-e)) is not determined by the initial condition.

(3 points)

Solution of problem 2(12 + 3 = 15 points)

(a) For k = 0 we obtain the coefficient

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{\pi} \int_{0}^{\pi} \pi - x \, dx = \frac{1}{\pi} \left[\pi x - \frac{1}{2} x^2 \right]_{0}^{\pi} = \frac{1}{2} \pi.$$

(2 points)

For $k \ge 1$ the coefficients a_k are given by

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} (\pi - x) \cos(kx) dx$$

$$= \frac{1}{\pi} \left(\left[\frac{\pi - x}{k} \sin(kx) \right]_{0}^{\pi} + \frac{1}{k} \int_{0}^{\pi} \sin(kx) dx \right)$$

$$= \frac{1}{\pi} \left(\left[\frac{\pi - x}{k} \sin(kx) \right]_{0}^{\pi} + \frac{1}{k} \left[-\frac{1}{k} \cos(kx) \right]_{0}^{\pi} \right)$$

$$= \frac{1}{\pi k^{2}} (1 - \cos(k\pi))$$

$$= \frac{1}{\pi k^{2}} (1 - (-1)^{k}).$$

(5 points)

For $k \ge 1$ the coefficients b_k are given by

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} (\pi - x) \sin(kx) dx$$

$$= \frac{1}{\pi} \left(\left[-\frac{\pi - x}{k} \cos(kx) \right]_{0}^{\pi} - \frac{1}{k} \int_{0}^{\pi} \cos(kx) dx \right)$$

$$= \frac{1}{\pi} \left(\left[-\frac{\pi - x}{k} \cos(kx) \right]_{0}^{\pi} - \frac{1}{k} \left[\frac{1}{k} \sin(kx) \right]_{0}^{\pi} \right)$$

$$= \frac{1}{k}.$$

(5 points)

(b) Extending f to a 2π -periodic function leads to discontinuities at the points $x = k\pi$ with $k \in \mathbb{Z}$. The general theorem about pointwise convergence states that at such points the Fourier series converges to the average of the left and right hand limits. In this case, we obtain

$$\frac{\lim_{x \to 0^{-}} f(x) + \lim_{x \to 0^{+}} f(x)}{2} = \frac{0 + \pi}{2} = \frac{\pi}{2}.$$

(3 points)

Solution of problem 3 (10 points)

Substituting the ansatz $u(t,x) = e^{-\omega^2 t} v(x)$ gives the following boundary value problem:

$$v''(x) + \omega^2 v(x) = 0$$
, $v'(0) + v(0) = 0$, $v'(1) = 0$.

(2 points)

The general solution of the differential equation is

$$v(x) = a\cos(\omega x) + b\sin(\omega x).$$

(2 points)

The boundary condition at x = 0 implies that

$$a+b\omega=0$$
.

The boundary condition at x = 1 implies that

$$-a\boldsymbol{\omega}\sin(\boldsymbol{\omega}) + b\boldsymbol{\omega}\cos(\boldsymbol{\omega}) = 0.$$

(2 points)

Writing the equations in matrix vector notation gives

$$\begin{pmatrix} 1 & \omega \\ -\omega \sin(\omega) & \omega \cos(\omega) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Nontrivial solutions for a and b exist if and only if the determinant of the coefficient matrix vanishes:

$$\omega\cos(\omega) + \omega^2\sin(\omega) = 0.$$

Since $\omega \neq 0$ this is equivalent to

$$tan(\boldsymbol{\omega}) = -\frac{1}{\boldsymbol{\omega}}.$$

(4 points)

Solution of problem 4(2 + 3 = 5 points)

(a) The solution formula of d'Alembert is given by

$$u(t,x) = \frac{f(x+ct) + f(x-ct)}{2}.$$

(2 points)

(b) Since f is odd, we have f(-z)=-f(z) for all $z\in\mathbb{R}$ and thus

$$u(t,0) = \frac{f(ct) + f(-ct)}{2} = \frac{f(ct) - f(ct)}{2} = 0.$$

(1 point)

Again using that f is odd gives

$$u(t,\ell) = \frac{f(\ell+ct) + f(\ell-ct)}{2} = \frac{f(\ell+ct) - f(-\ell+ct)}{2}.$$

(1 point)

Using that f is 2ℓ -periodic gives $f(-\ell+ct)=f(\ell+ct)$ and thus $u(t,\ell)=0$. (1 point)